Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Ann Rheum Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531610

ABSTRACT

OBJECTIVE: Diffuse central nervous system manifestations, referred to as neuropsychiatric lupus (NPSLE), are observed in 20-40% of lupus patients and involve complex mechanisms that have not yet been adequately elucidated. In murine NPSLE models, choroid plexus (ChP)-infiltrating T cells have not been fully evaluated as drivers of neuropsychiatric disease. METHOD: Droplet-based single-cell transcriptomic analysis (single-cell RNA sequencing) and immune T-cell receptor profiling were performed on ChP tissue from MRL/lpr mice, an NPSLE mouse model, at an 'early' and 'late' disease state, to investigate the infiltrating immune cells that accumulate with NPSLE disease progression. RESULTS: We found 19 unique clusters of stromal and infiltrating cells present in the ChP of NPSLE mice. Higher resolution of the T-cell clusters uncovered multiple T-cell subsets, with increased exhaustion and hypoxia expression profiles. Clonal analysis revealed that the clonal CD8+T cell CDR3 sequence, ASGDALGGYEQY, matched that of a published T-cell receptor sequence with specificity for myelin basic protein. Stromal fibroblasts are likely drivers of T-cell recruitment by upregulating the VCAM signalling pathway. Systemic blockade of VLA-4, the cognate ligand of VCAM, resulted in significant resolution of the ChP immune cell infiltration and attenuation of the depressive phenotype. CONCLUSION: Our analysis details the dynamic transcriptomic changes associated with murine NPSLE disease progression, and highlights its potential use in identifying prospective lupus brain therapeutic targets.

2.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961352

ABSTRACT

Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.

3.
Cell Rep ; 42(11): 113294, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37883230

ABSTRACT

Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.


Subject(s)
Bordetella Infections , Bordetella bronchiseptica , Bordetella , Humans , Eosinophils , Bordetella Infections/microbiology , Bordetella Infections/prevention & control , Reinfection
4.
Endocrinology ; 164(11)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37738419

ABSTRACT

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.


Subject(s)
Adipose Tissue , Receptors, Glucocorticoid , Mice , Animals , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Inflammation/genetics , Inflammation/metabolism , Homeostasis/genetics , Mice, Knockout , Genes, Regulator , RNA, Messenger/metabolism
5.
PLoS Pathog ; 19(3): e1011187, 2023 03.
Article in English | MEDLINE | ID: mdl-36888692

ABSTRACT

The current study reveals that in chronic TB, the B cell-deficient µMT strain, relative to wild-type (WT) C57BL/6 mice, displays in the lungs lower levels of inflammation that are associated with decreased CD4+ T cell proliferation, diminished Th1 response, and enhanced levels of interleukin (IL)-10. The latter result raises the possibility that B cells may restrict lung expression of IL-10 in chronic TB. These observations are recapitulated in WT mice depleted for B cells using anti-CD20 antibodies. IL-10 receptor (IL-10R) blockade reverses the phenotypes of decreased inflammation and attenuated CD4+ T cell responses in B cell-depleted mice. Together, these results suggest that in chronic murine TB, B cells, by virtue of their capacity to restrict expression of the anti-inflammatory and immunosuppressive IL-10 in the lungs, promote the development of a robust protective Th1 response, thereby optimizing anti-TB immunity. This vigorous Th1 immunity and restricted IL-10 expression may, however, allow the development of inflammation to a level that can be detrimental to the host. Indeed, decreased lung inflammation observed in chronically infected B cell-deficient mice, which exhibit augmented lung IL-10 levels, is associated with a survival advantage relative to WT animals. Collectively, the results reveal that in chronic murine TB, B cells play a role in modulating the protective Th1 immunity and the anti-inflammatory IL-10 response, which results in augmentation of lung inflammation that can be host-detrimental. Intriguingly, in tuberculous human lungs, conspicuous B cell aggregates are present in close proximity to tissue-damaging lesions manifesting necrosis and cavitation, suggesting the possibility that in human TB, B cells may contribute to the development of exacerbated pathology that is known to promote transmission. Since transmission is a major hindrance to TB control, investigating into whether B cells can shape the development of severe pulmonic pathological responses in tuberculous individuals is warranted.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Mice , Humans , Animals , Interleukin-10/metabolism , Mice, Inbred C57BL , Inflammation , Th1 Cells
6.
Nature ; 563(7732): 559-563, 2018 11.
Article in English | MEDLINE | ID: mdl-30464266

ABSTRACT

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Subject(s)
Cadherins/metabolism , Orthohantavirus/physiology , Virus Internalization , Animals , Cadherins/chemistry , Cadherins/deficiency , Cadherins/genetics , Endothelial Cells/virology , Female , Orthohantavirus/pathogenicity , Hantavirus Pulmonary Syndrome/virology , Haploidy , Host-Pathogen Interactions/genetics , Humans , Lung/cytology , Male , Mesocricetus/virology , Protein Domains , Protocadherins , Sin Nombre virus/pathogenicity , Sin Nombre virus/physiology
7.
Infect Immun ; 86(9)2018 09.
Article in English | MEDLINE | ID: mdl-29891545

ABSTRACT

Mycobacterium tuberculosis remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by M. tuberculosis We previously reported that the mycobacterial ribosome is a major target of CD4+ T cells in mice immunized with a genetically modified Mycobacterium smegmatis strain (IKEPLUS) but not in mice immunized with Mycobacterium bovis BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of M. tuberculosis, but the breadth of the CD4+ T cell response to M. tuberculosis ribosomes was not determined. In the present study, a library of M. tuberculosis ribosomal proteins and in silico-predicted peptide libraries were used to screen CD4+ T cell responses in IKEPLUS-immunized mice. This identified 24 out of 57 M. tuberculosis ribosomal proteins distributed over both large and small ribosome subunits as specific CD4+ T cell targets. Although BCG did not induce detectable responses against ribosomal proteins or peptide epitopes, the M. tuberculosis ribosomal protein RplJ produced a robust and multifunctional Th1-like CD4+ T cell population when administered as a booster vaccine to previously BCG-primed mice. Boosting of BCG-primed immunity with the M. tuberculosis RplJ protein led to significantly reduced lung pathology compared to that in BCG-immunized animals and reductions in the bacterial burdens in the mediastinal lymph node compared to those in naive and standard BCG-vaccinated mice. These results identify the mycobacterial ribosome as a potential source of cryptic or subdominant antigenic targets of protective CD4+ T cell responses and suggest that supplementing BCG with ribosomal antigens may enhance protective vaccination against M. tuberculosis.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Mycobacterium tuberculosis/chemistry , Ribosomal Proteins/immunology , Tuberculosis/immunology , Animals , BCG Vaccine/immunology , Female , Immunization, Secondary , Interferon-gamma/immunology , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/immunology , Peptide Library , Tuberculosis/prevention & control , Tuberculosis Vaccines/immunology
8.
Science ; 354(6310): 350-354, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27608667

ABSTRACT

There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Carrier Proteins/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Membrane Glycoproteins/immunology , Receptors, Virus/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites/immunology , Cell Line, Tumor , Endosomes/virology , Hemorrhagic Fever, Ebola/therapy , Humans , Immunotherapy/methods , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred BALB C , Niemann-Pick C1 Protein , Virus Internalization
9.
Semin Immunol ; 26(6): 588-600, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25458990

ABSTRACT

Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis.


Subject(s)
Antibodies, Bacterial/immunology , B-Lymphocytes/immunology , Granuloma/immunology , Immunity, Humoral , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antigen Presentation , B-Lymphocytes/microbiology , B-Lymphocytes/pathology , Cytokines/biosynthesis , Cytokines/immunology , Granuloma/microbiology , Granuloma/pathology , Host-Pathogen Interactions , Humans , Immunity, Cellular , Immunoglobulin M/biosynthesis , Immunoglobulin M/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mice , Receptors, IgG/genetics , Receptors, IgG/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
10.
Innate Immun ; 18(1): 70-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21239456

ABSTRACT

Activation of NF-κB has been reported to play a key role in causing endotoxin-induced hepatic damage through enhanced production of reactive oxygen species and pro-inflammatory mediators. In this context, the potential of polyphenolic phytochemicals in preventing endotoxin-induced liver damage remains unclear. Here, we demonstrate that catechin and quercetin have the potential to down-regulate the initial signalling molecule NF-κB which may further inhibit the downstream cascade including TNF-α and NO. These results were confirmed using N-nitro-L-arginine methyl ester (L-NAME), the inhibitor of inducible nitric oxide synthase (iNOS) along with the biochemical and histological alterations occurring in the presence and absence of supplementation with both the polyphenols. However, catechin was found to be more effective than quercetin against endotoxin-induced liver injury. These findings suggest that these polyphenols may form a pharmacological basis for designing a therapeutic agent against endotoxin-mediated oxidative damage.


Subject(s)
Catechin/administration & dosage , Endotoxins/immunology , Liver Diseases/drug therapy , Liver Diseases/immunology , NF-kappa B/antagonists & inhibitors , Polyphenols/therapeutic use , Quercetin/administration & dosage , Animals , Antioxidants/administration & dosage , Antioxidants/adverse effects , Catechin/adverse effects , Disease Models, Animal , Endotoxins/toxicity , Female , Humans , Liver Diseases/pathology , NG-Nitroarginine Methyl Ester/administration & dosage , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Oxidative Stress/drug effects , Quercetin/adverse effects , Rats , Rats, Wistar , Sepsis/complications , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
Life Sci ; 89(23-24): 847-53, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-21958471

ABSTRACT

AIMS: Use of probiotics, alone or as adjunct to other established therapies, has been reported to have potential benefits. Recently, we have reported protective potential of probiotic against Salmonella-induced liver injury. However, co-supplementation with prebiotics did not result in meaningful synergism at systemic level. Owing to the action of probiotics at the mucosal level and of arginine at systemic level, the present study was designed to evaluate the effect of Lactobacillus plantarum alone or in conjunction with arginine to combat endotoxin-mediated liver injury in rats. MAIN METHODS: Bacterial endotoxin/lipopolysaccharide (LPS) was injected intraperitoneally and animals were sacrificed 8h post-challenge. Efficacy of L. plantarum alone or in conjunction with l-arginine was determined on the basis of enzyme markers, histology, levels of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) in addition to identification of amino acids by paper chromatography. KEY FINDINGS: Prior supplementation of LPS-challenged rats with L. plantarum (10(10)CFU per rat given orally for 10 days) demonstrated decreased levels of liver enzymes, NO and TNF-α. Interestingly, complementing Lactobacillus with arginine revealed a synergistic decrease not only in the liver markers but also in NO and TNF-α along with increased intensity of ornithine and methionine. Histological evidence also confirmed the protective efficacy of probiotic in conjunction with l-arginine. SIGNIFICANCE: Presence of ornithine and methionine in the probiotic-arginine co-supplemented group suggests involvement of arginase-induced synthesis of polyamines. This study highlights that L. plantarum may direct l-arginine metabolism towards polyamine synthesis thereby exhibiting synergistic effect against liver injury.


Subject(s)
Arginine/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Lactobacillus plantarum , Lipopolysaccharides/pharmacology , Probiotics/therapeutic use , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Kupffer Cells/drug effects , Liver/chemistry , Liver/drug effects , Liver/enzymology , Liver/pathology , Nitric Oxide/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/analysis
12.
PLoS One ; 6(6): e20635, 2011.
Article in English | MEDLINE | ID: mdl-21673994

ABSTRACT

Induction of nuclear factor kappa B (NF-κB)-mediated gene expression has been implicated in the pathogenesis of alcoholic liver disease through enhanced production of reactive oxygen species and pro-inflammatory mediators. The present study was carried out to investigate the role of catechin as a chain breaking inhibitor against experimental alcoholic liver injury. Rats were administered 35% v/v ethanol orally at a dose of 10 g/Kg/day for two weeks, followed by 14 g/Kg/day for 10 weeks. Catechin (50 mg/Kg) was co-supplemented after 4 weeks of alcohol treatment till the end of the dosing period. Following chronic alcohol exposure, rats developed endotoxemia and severe pathological changes in the liver such as pronounced fatty change, vacuolar degeneration and inflammation. These changes were accompanied by activation of NF-κB and induction of inflammatory and cytotoxic mediators leading to increased level of tumor necrosis factor-alpha, enhanced formation of malondialdehyde in the liver followed by drastic alterations in the hepatic antioxidant defense systems. Additionally, nitrite levels and lactate dehydrogenase activities were also significantly elevated on chronic alcohol consumption. Alcohol exposure also increased the number of micronucleated cells indicating that alcohol abuse may again be associated with the nuclear changes. Supplementation with catechin ameliorated the alcohol-induced liver injury by downregulating the endotoxin-mediated activation of initial signalling molecule NF-κB and further going downstream the signalling cascade including tumor necrosis factor-alpha, nitric oxide and reactive oxygen species and by enhancing the antioxidant profile. These observations correlated well with the histological findings. Moreover, a remarkable decrease in the percentage of micronucleated cells was observed with catechin supplementation indicating an apparent protection against alcohol-induced toxicity. These findings suggest that catechin may alleviate experimental alcoholic liver disease by suppressing induction of NF-κB, a key component of signalling pathway, thus forming a pharmacological basis for designing novel therapeutic agents against alcohol induced endotoxin-mediated liver injury.


Subject(s)
Alcohols/adverse effects , Catechin/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Endotoxins/metabolism , Signal Transduction/drug effects , Alcohols/blood , Animals , Antioxidants/metabolism , Catechin/therapeutic use , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/drug therapy , Disease Models, Animal , Endotoxins/blood , Female , Liver/drug effects , Liver/injuries , Liver/metabolism , Liver/pathology , Malondialdehyde/metabolism , NF-kappa B/metabolism , Nitrites/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
13.
Antimicrob Agents Chemother ; 55(9): 4176-82, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21690282

ABSTRACT

In view of the emergence of multidrug-resistant Salmonella strains, there is a need for therapeutic alternatives. To reduce the dose of antibiotic required in order to decrease the associated side effects, the present study was aimed at evaluating the synergism between cryptdin 2 (a Paneth cell antimicrobial peptide) and ampicillin (Amp) against Salmonella enterica serovar Typhimurium. The synergy was evaluated in terms of the fractional bactericidal concentration (FBC) index, time-kill assay results (in vitro), macrophage functions, i.e., intracellular killing, lipid peroxidation, superoxide dismutase activity, and generation of nitrite (ex vivo), and decreases in CFU of salmonellae in livers, spleens, and small intestines of infected mice treated with cryptdin 2 and/or Amp (in vivo). In vitro synergism between the two agents was observed on the basis of the FBC index and time-kill assays. When the agents were used in combination, ex vivo studies revealed an enhanced effect on macrophage functions, particularly exhibiting a synergetic effect in terms of SOD levels. In vivo synergy was indicated by larger log unit decreases in all target organs of mice treated with the combination than those for the drugs used alone. These results point toward the possible use of cryptdin 2 as an adjunct to ampicillin and may help in developing alternate strategies to combat Salmonella infections.


Subject(s)
Ampicillin/pharmacology , Ampicillin/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Proteins/pharmacology , Proteins/therapeutic use , Salmonella Infections/drug therapy , Animals , Defensins , Female , Male , Mice , Microbial Sensitivity Tests , Salmonella typhimurium/drug effects
14.
Biol Trace Elem Res ; 133(1): 110-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19462160

ABSTRACT

Various studies indicate the role of manganese (Mn) in the virulence of pathogens. Salmonella is an intracellular pathogen which is able to multiply within the macrophages. The present study was therefore, designed to assess the effect of Mn supplementation on Salmonella-macrophage interactions particularly in reference to Salmonella virulence and macrophage functions. A 50-fold decrease in the lethal dose 50 (LD(50)) of Salmonella typhimurium was observed when mice were infected with Salmonella grown in the presence of Mn as compared to the LD(50) in the absence of Mn indicating an increase in the virulence of the organism. A significant increase was observed in the levels of superoxide dismutase (SOD) of S. typhimurium grown in presence of manganese. Upon Mn supplementation, macrophage functions were also found to be altered. Decreased phagocytic activity of macrophages interacted with Salmonella was observed in presence of Mn as compared to the activity in the absence of Mn. A significant increase was observed in the extent of lipid peroxidation along with significant decreases in the activities of SOD and catalase as well as nitrite levels of macrophages interacted with S. typhimurium upon supplementation with Mn. These observations indicate that Mn supplementation might have increased the expression of Mn transporters in Salmonella resulting in increased levels of its superoxide dismutase. The altered Salmonella function in turn might have been responsible for inhibiting phagocytosis and impairing the balance between the oxidant and antioxidant profile of macrophages, thus protecting itself by exhibiting exalted virulence.


Subject(s)
Macrophages/drug effects , Manganese/pharmacology , Salmonella Infections , Salmonella typhimurium/drug effects , Animals , Catalase/metabolism , Lethal Dose 50 , Mice , Mice, Inbred BALB C , Salmonella Infections/immunology , Salmonella Infections/microbiology
15.
FEMS Microbiol Ecol ; 69(2): 222-30, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19496820

ABSTRACT

In view of the increasing interest in the bioecological and nutritional control of diseases, use of probiotics alone or in combination with prebiotics (synbiotics) appears as a therapeutic option for various diseases. In this study, an attempt was made to explore the protective potential of Lactobacillus acidophilus as a probiotic, inulin as a prebiotic and both L. acidophilus and inulin as synbiotic against Salmonella-induced liver damage in a murine model. The probiotic, prebiotic and synbiotic supplementation resulted in decreased bacterial translocation in the liver of mice challenged with Salmonella typhimurium and decreased levels of serum aminotransferases, suggesting their protective role against Salmonella infection. Mice supplemented with these preparations before Salmonella challenge also revealed decreased levels of lipid peroxidation, increased levels of superoxide dismutase and glutathione, along with reduced levels of nitric oxide. Thus, bacteriological and biochemical alterations correlated well with the histological evidence. Protection afforded by supplementation with the probiotic alone was found to be more effective. None of the observations was suggestive of the synergistic effect in the synbiotic-supplemented animals. Thus, it is indicated that the probiotic and the prebiotic used in the present study may act by different mechanisms involved in affording protection against Salmonella-induced liver damage.


Subject(s)
Inulin/therapeutic use , Liver Diseases/drug therapy , Probiotics/therapeutic use , Salmonella Infections, Animal/drug therapy , Animals , Bacterial Translocation , Glutathione/metabolism , Lactobacillus acidophilus , Lipid Peroxidation , Liver Diseases/microbiology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Superoxide Dismutase/metabolism , Transaminases/blood
16.
Int J Biomed Sci ; 4(2): 103-12, 2008 Jun.
Article in English | MEDLINE | ID: mdl-23675075

ABSTRACT

Bacterial endotoxin or lipopolysaccharide causes extensive damage to various organs including the liver. This is due to an increased production of tumor necrosis factor α induced- reactive intermediates. These intermediates are known to cause extensive damage to a variety of cellular biomolecules leading to oxidative stress. In the present study, the role of the pineal hormone melatonin was evaluated as an antioxidant against endotoxin induced- hepatotoxicity using Wistar rats. Bacterial endotoxin was injected (i.v) and animals were sacrificed 8h post-challenge. Endotoxemia was associated with a statistically significant rise in the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and also caused histopathological changes. Administration of melatonin could significantly attenuate these enzymatic and associated histological alterations. Melatonin was administered (i.p) pre and/or post endotoxin challenge. A significant reduction in the levels of malondialdehyde and tumor necrosis factor-α in the hepatic tissue was also observed with melatonin supplementation. Reduction in the levels of endogenous antioxidants such as superoxide dismutase, catalase and reduced glutathione after endotoxin challenge was effectively attenuated by the administration of melatonin. Endotoxin challenge caused a marked increases in the levels of nitrite, and this was significantly lowered by melatonin administration. The above mentioned changes might have resulted in endotoxin associated hepatocellular necrosis which was minimized by melatonin supplementation in the present study.

17.
Microbes Infect ; 8(7): 1695-701, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16807038

ABSTRACT

Pathogenic microorganisms are known to sense and process signals within their hosts, including those resulting from starvation. Therefore, an attempt was made to evaluate the extent and the possible underlying mechanism of Salmonella typhimurium-induced hepatic damage using pre-starved laboratory mice. The following parameters were analysed, comparing control, fed infected, starved, and starved infected mice: the bacterial load in the liver, fluctuations in liver-derived enzymes alanine-aminotransferase and aspartate-aminotransferase, histopathological changes, lipid peroxidation as well as estimation of reduced glutathione, superoxide dismutase and catalase, along with the TNF content in livers. The number of bacterial cells recovered from starved infected livers at 3 days post-S. typhimurium inoculation was comparable to the number recovered from fed infected livers at 5 days post-Salmonella inoculation, indicating an early increase in the development of the bacteria in starved mice. A marked elevation in liver-derived enzymes in mouse serum and significant histopathological changes are markers of liver damage of higher amplitude in starved infected mice. Analysis of the liver indicated a significant increase in lipid peroxidation in starved infected mice compared to their control counterparts, a process coupled with increased TNF level. Although the reduced glutathione levels showed a marked increase in the starved infected mice, there was a significant decrease in superoxide dismutase and catalase activities in this group.


Subject(s)
Lipid Peroxidation , Liver/microbiology , Liver/pathology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/isolation & purification , Starvation/complications , Tumor Necrosis Factor-alpha/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Biomarkers , Catalase/analysis , Colony Count, Microbial , Glutathione/analysis , Histocytochemistry , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/microbiology , Superoxide Dismutase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...